This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

A Synthetic and Stereochemical Study of 2,6-Diaroyl-3,5-Diaryl-4-Ethyltetrahydro-1,4-Thiazine-1,1-Dioxides

M. Gnanadeepam^a; S. Selvaraj^b; S. Perumal^b; S. Renuga^a; S. Selvaraj^c

^a Department of Chemistry, Fatima College, Madurai ^b School of Chemistry, Madurai Kamaraj University, Madurai ^c Drug Development, Isotechnika Inc., Alberta, Canada

Online publication date: 27 October 2010

To cite this Article Gnanadeepam, M., Selvaraj, S., Perumal, S., Renuga, S. and Selvaraj, S. (2002) 'A Synthetic and Stereochemical Study of 2,6-Diaroyl-3,5-Diaryl-4-Ethyltetrahydro-1,4-Thiazine-1,1-Dioxides', Phosphorus, Sulfur, and Silicon and the Related Elements, 177: 2,431-436

To link to this Article: DOI: 10.1080/10426500210254 URL: http://dx.doi.org/10.1080/10426500210254

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

A SYNTHETIC AND STEREOCHEMICAL STUDY OF 2,6-DIAROYL-3,5-DIARYL-4-ETHYLTETRAHYDRO-1,4-THIAZINE-1,1-DIOXIDES

M. Gnanadeepam, a S. Selvaraj, b S. Perumal, b S. Renuga, a and S. Selvaraj c

Department of Chemistry, Fatima College, Madurai-625018^a; School of Chemistry, Madurai Kamaraj University, Madurai-625021^b; and Drug Development, Isotechnika Inc., Alberta, Canada T5S1E8^c

(Received April 11 2001.)

Double aza-Michael addition of ethylamine over 2,2'-sulfonylbis(1,3-diarylprop-2-en-1-ones) gave the previously unknown title compounds in moderate yields. The decreased yields of the title compounds compared to 2,6-diaroyl-3,5-diaryltetrahydro-1,4-thiazine-1,1-dioxides or the corresponding 4-methyl derivatives is explained on the basis of steric size of the nucleophile. The structure and stereochemistry of the thianes have been deduced from elemental analyses and spectroscopic data.

Keywords: 2,2'-sulfonylbis(1,3-diarylprop-2-en-1-ones); 2,6-diaroyl-3, 5-diaryl-4-ethyltetrahydro-1,4-thiazine-1,1-dioxides; bis(aroylmethyl) sulfones; NMR spectroscopic data; stereochemistry; tandem MichaelretroKnoevenagal reaction

INTRODUCTION

The Michael addition of ammonia¹ or methylamine² over 2,2′-sulfonylbis(1,3-diarylprop-2-en-1-ones) yielded the tetrahydrothiazines in very good yields. In contrast, the reaction of bulky nucleophiles such as aniline and 2,4-dinitrophenylhydrazine afforded bis(aroylmethyl) sulfones as a result of cleavage of the sulfonylbis compounds instead of thiazines.³ In addition, thiazines are known to be biologically active.^{4–8} Hence the reaction of 2,2′-sulfonylbis (1,3-diarylprop-2-en-1-ones) with ethylamine, which is intermediate in size compared to methylamine and aniline, was investigated. The results are presented here.

 ${\bf Address\ correspondence\ to\ S.\ Selvaraj, School\ of\ Chemistry, Fatima\ College,\ Madurai-625018.}$

RESULTS AND DISCUSSION

Double aza-Michael addition of ethylamine over 2,2'-sulfonylbis(1,3-diarylprop-2-en-1-ones) **1** in DMF afforded 2,6-diaroyl-3,5-diaryl-4-ethyltetrahydro-1,4-thiazine-1,1-dioxides **2** in moderate yields (Scheme 1). The yield, m.p. and elemental analyses are presented in Table I.

ArCO
$$O_2$$
 O_2 O_3 O_4 O_4 O_5 O_5 O_5 O_5 O_5 O_6 O_6 O_7 O_8 O_8 O_8 O_9 O_9

The 1 H NMR signals of all the compounds (**2a–2e**) have been completely assigned and are explained with 2,6-di(p-chlorobenzoyl)-3,5-di (p-methylphenyl)-4-ethyltetrahydrothiazine-1,1-dioxide (**2d**) as an example. The most downfield signal at 7.92 ppm integrating for four protons with an ortho coupling (J=8.9 Hz) is assigned to the ortho protons of aroyl groups as they are deshielded by the carbonyl group. The other doublet at 7.60 ppm (J=8.9 Hz) is assigned to the meta protons of the aroyl groups as it is a coupling partner of the doublet at 7.92 ppm. Of

TABLE I Physical Data of Compounds (2a-2e)

	Yield (%)	m.p. (°C)	Found (%)		Calcd (%)	
Compd			С	Н	С	Н
2a	58	222–24	73.45	5.53	73.40	5.58
2 b	52	242^a	64.79	4.55	64.87	4.59
2c	48	216-18	58.18	3.79	58.11	3.81
2d	52	198-200	65.73	5.07	65.80	5.03
2e	66	212-14	74.11	6.07	74.02	6.03

^aDecomposed.

the two remaining signals in the aromatic region, the upfield signal at 7.06 ppm (J=7.6 Hz) can be reasonably assigned to the *meta* protons of the aryl groups as they are *ortho* to tolyl methyl group and hence appear upfield. Consequently, the other broad signal at 7.40 ppm due to four protons is assigned to the *ortho* protons of the aryl groups.

The singlet at 2.15 ppm is assignable to Ar–Me. The triplet at 0.67 ppm integrating for three protons is assigned to N–CH₂Me and the signal due to N–CH₂Me appears as a quartet at 2.09 ppm. The two doublets appearing at 6.47 ppm and 4.70 ppm ($J=10.5~\rm Hz$) are assigned to H-2,6 and H-3,5 of the thiazine ring respectively. This vicinal coupling constant (10.5 Hz) clearly indicates the diaxial nature of the protons and hence the aroyl and aryl groups are all equatorially oriented. The proton signals of the other thiazines are deduced in a similar manner. The ¹H NMR data of 2,6-diaroyl-3,5-diaryl-4-ethyltetrahydro-1,4-thiazine-1,1-dioxides **2** are presented in Table II.

It is interesting to note that the *ortho* protons of aryl groups in all the thiazines appear as a broad signal instead of a doublet. Similar observation have been made in the case of closely related system 2,6-diaroyl-3,5-diaryl-4-methyltetrahydro-1,4-thiazine-1,1-dioxides² but not in 2,6-diaroyl-3,5-diaryltetrahydro-1,4-thiazine-1,1-dioxides¹ where the

TABLE II ¹H NMR Data^a of 2,6-diaroyl-3,5-diaryl-4-ethyltetrahydro-1,4-thiazine-1,1-dioxides **2** in DMSO-d₆

Compd	δ (ppm)
2a	4.78 (d, 2H, $J = 10.7$ Hz, H-3,5); 6.52 (d, 2H, $J = 10.7$ Hz, H-2,6); 7.90 (d, 4H, $J = 7.9$ Hz, H-o); 7.62 (t, 2H, $J = 7.9$ Hz, H-p); 7.48 (t, 4H, $J = 7.9$ Hz, H-m);
	7.54 (bs, 4H, H-o'); 7.24 (t, 4H, $J = 7.3$ Hz, H-m'); 7.13 (t, 2H, $J = 7.3$ Hz,
	H-p'); 2.14 (q, 2H, N <u>CH</u> ₂ Me); 0.70 (t, 3H, NCH ₂ Me)
2b	$4.79 (d, 2H, J = 10.4 Hz, \overline{H}-3.5); 6.51 (d, 2H, J = 10.4 Hz, H-2.6);$
	7.94 (d, 4H, J = 8.7 Hz, H-o); 7.66 (t, 2H, J = 7.0 Hz, H-p); 7.52 (t, 4H, J-p); 7.52 (
	J = 7.0 Hz H-m; 7.64 (bs, 4H, H-o'); 7.34 (d, 4H, $J = 7.9 Hz$, H-m');
	2.08 (q, 2H, NCH ₂ Me); 0.70 (t, 3H, NCH ₂ Me)
2c	$4.78 \text{ (d, 2H, } J = 10.\overline{4} \text{ Hz, H-3,5)}; 6.49 \text{ (d, 2H, } J = 10.4 \text{ Hz, H-2,6)}; 7.91 \text{ (d, 4H, } J $
	J = 7.3 Hz, H-o); $7.64 (d, 4H, J = 7.3 Hz, H-m$);); $7.57 (bs, 4H, H-o'$);
	$7.36~({\rm d},4{\rm H},{\it J}=7.9~{\rm Hz},{\rm H-}\it{m'}); 2.10~({\rm q},2{\rm H},{\rm N}\underline{\rm CH}_2{\rm Me}); 0.70~({\rm t},3{\rm H},{\rm NCH}_2\underline{\rm Me})$
2d	$4.70 \text{ (d, 2H, } J = 10.5 \text{ Hz, H-3,5}); 6.47 \text{ (d, 2H, } J = \overline{10.5 \text{ Hz, H-2,6}}); 7.92 \text{ (d, 4H, } J = 10.5 \text{ Hz, H-2,6}); 7.92 \text{ (d, 4H, } J = 10.5 \text{ (d, 4H, } J = 10.5 \text{ (d, 4H, } J$
	J = 8.9 Hz, H-o; 7.60 (d, 4H, $J = 8.9 Hz, H-m$); 7.40 (bs, 4H, H- o ');
	7.06 (d, 4H, J = 7.6 Hz, H-m'); 2.09 (q, 2H, NCH2Me); 0.67 (t, 3H, NCH2Me);
	2.15 (s, 6H, Ar–Me)
2e	$4.77~(\mathrm{d},2\mathrm{H},J=10.7~\mathrm{Hz},\mathrm{H-3,5});6.47~(\mathrm{d},2\mathrm{H},J=10.7~\mathrm{Hz},\mathrm{H-2,6});7.82~(\mathrm{d},4\mathrm{H},4\mathrm{H-2,6});7.82~(\mathrm{d},4\mathrm{H},4\mathrm{H-2,6});7.82~(\mathrm{d},4\mathrm{H,}4\mathrm{H-2,6});7.82~(\mathrm{d},4\mathrm{H,}4\mathrm{H-2,6});7.82~(\mathrm{d},4\mathrm{H,}4\mathrm{H-2,6});7.82~(\mathrm{d},4\mathrm{H,}4\mathrm{H-2,6});7.82~(\mathrm{d},4\mathrm{H,}4\mathrm{H-2,6});7.82~(\mathrm{d},4\mathrm{H,}4\mathrm{H-2,6});7.82~(\mathrm{d},4\mathrm{H,}4\mathrm{H-2,6}$
	J = 8.3 Hz, H-o; 7.28 (d, 4H, $J = 8.3 Hz, H-m$); 7.53 (bs, 4H, H- o');
	$7.23~({\rm t},4{\rm H},J=7.3~{\rm Hz},{\rm H-}m');7.13~({\rm t},2{\rm H},J=7.3~{\rm Hz},{\rm H-}p');2.10~({\rm q},2{\rm H},2{\rm Hz})$
	$N\underline{CH_2}\underline{Me}$); 0.70 (t, 3H, $N\underline{CH_2}\underline{Me}$); 2.33 (s, 6H, $Ar\underline{-\underline{Me}}$)

^aChemical shifts are expressed with reference to tetramethylsilane.

TABLE III 13 C NMR Data^a of 2,6-diaroyl-3,5-diaryl-4-ethyltetrahydro-1,4-thiazine-1,1-dioxides **2** in DMSO-d₆

Compd	δ (ppm)
2a	65.2 (C-3,5); 68.8 (C-2,6); 137.2 (C- <i>i</i>); 134.3 (C- <i>i'</i>); 138.5 (C- <i>p</i>); 128.3–128.8
	$(\text{C-}o, m, o', m' \text{ and } p'); 41.8 (N\underline{\text{CH}}_{2}\underline{\text{Me}}); 6.4 (N\underline{\text{CH}}_{2}\underline{\text{Me}}); 189.1 (CO)$
2b	64.3 (C-3,5); 68.5 (C-2,6); 137.0 (C-i); 137.5 (C-i'); 132.8 (C-p'); 128.6–129.0
2c	(C-o, m, p, o' and m'); 41.5 (NCH ₂ Me); 6.4 (NCH ₂ Me); 188.8 (CO) 64.0 (C-3,5); 68.3 (C-2,6); 136.9 (C-i); 139.6 (C-i'); 135.1 (C-p); 132.6 (C-p');
20	$128.9 \text{ (C-o)}; 128.5^b \text{ (C-m)}; 129.2 \text{ (C-o')}; 128.4^b \text{ (C-m')}; 41.6 \text{ (NCH}_2\text{Me)};$
	6.2 (NCH ₂ Me); 187.5 (CO)
2d	$64.3 \text{ (C-3,5)}; \overline{68.5} \text{ (C-2,6)}; 135.0^b \text{ (C-}i); 139.3 \text{ (C-}i'); 135.3^b \text{ (C-}p); 137.2 \text{ (C-}p');$
	$130.3~(\text{C-}o);~128.7^{\text{b}}~(\text{C-}m);~128.1~(\text{C-}o');~128.8^{\text{b}}~(\text{C-}m');~41.2~(\text{N\underline{CH}}_{\underline{2}}\text{Me});$
	6.0 (NCH ₂ $\underline{\text{Me}}$); 20.5 (Ar– $\underline{\text{Me}}$); 187.6 (CO)
2e	$64.6 \text{ (C-3,5)}; 68.2 \text{ (C-2,6)}; 134.4 \text{ (C-}i); 144.8 \text{ (C-}i'); 138.3 \text{ (C-}p); 128.1^b \text{ (C-}p');$
	$128.6 \text{ (C-}o); 129.0 \text{ (C-}m); 128.4 \text{ (C-}o'); 127.9^b \text{ (C-}m'); 41.5 \text{ (N\underline{CH_2}Me)};$
	$6.0 (NCH_2\underline{Me}); 21.0 (Ar-\underline{Me}); 187.9 (CO)$

^aChemical shifts are expressed with reference to tetramethylsilane.

nitrogen possesses only hydrogen. Hence broadening of the signal occurs only when the thiazine nitrogen bears a methyl or ethyl group suggesting restricted rotation of the aryl group which may probably be ascribed to steric interaction between the alkyl and the aryl groups. Such loss of splitting of the signal due to restricted rotation has been reported in the case of some pyrazolines. The fact that aniline and substituted anilines bring about the cleavage of 1 leading to bis(aroylmethyl) sulfones also supports the above conclusion.

The ¹³C signals of all the thiazines assigned on the basis of substituent induced chemical shift considerations, multiplicity and APT spectra are given in Table III.

It is pertinent to note that the yields are only moderate because of the formation of bis(aroylmethyl) sulfones as by-products. This is in contrast to excellent yields (85–97%) of thiazines obtained from the conjugate addition of ammonia¹ or methylamine² over 1. This may be attributed to the increase in the bulkiness of the alkyl group. As the size of the nucleophile increases, 1 may undergo cleavage via a tandem Michael-retroKnoevenagel reaction to give bis(aroylmethyl) sulfone as depicted in Figure 1.

EXPERIMENTAL

The melting points are uncorrected. NMR spectra were recorded at 20°C on a Bruker AMX 300 instrument operating at 300 MHz for ¹H

^bThese assignments may be reversed.

ArCO
$$O_2$$
 COAr O_2 COAr O_2 COAr O_3 ArCO O_4 Ar' O_4 Ar' O_5 COAr O_5 COAr O_5 COAr O_5 ArCO O_5 COAr O_5 ArCO O_5 ArCO O_5 ArCO O_5 ArCO O_5 ArCO O_5 ArCH=NEt

FIGURE 1 Mechanism of cleavage of 2,2'-sulfonylbis(1,3-diarylprop-2-en-1-ones)

and at 75 MHz for ¹³C. Solutions (in DMSO-d₆) were approximately 0.05 M and chemical shifts were referenced internally to TMS in all cases.

2,6-Diaroyl-3,5-diaryl-4-ethyltetrahydro-1,4-thiazine-1,1-dioxides 2

General Procedure for 2 by Conjugate Addition of Ethylamine

To a solution of 2,2'-sulfonylbis(1,3-diarylprop-2-en-1-one)¹⁰ (0.96 g, 2 mmol) in DMF (25 ml), an aqueous solution of ethylamine (40%, 0.3 ml) was added and kept at room temperature for 24 h. The reaction mixture was poured into ice water and the resulting solid was crystallized from chloroform-ethanol mixture.

ACKNOWLEDGMENTS

M.G. and S.R. thank the correspondent and the principal, Fatima College, Madurai-18 for facilities. S.P. thanks CSIR, New Delhi for a Major Research Project. S.S. and S.P. thank UGC, New Delhi for funds under UGC-DRS program, DST, New Delhi for funds under FIST program and for funds for the purchase of a high resolution NMR instrument under DST-IRHPA program.

REFERENCES

- M. Gnanadeepam, S. Selvaraj, S. Perumal, R. Murugan, and A. Lycka, *Indian J. Chem.*, 38B, 962 (1999).
- [2] M. Gnanadeepam, S. Selvaraj, S. Perumal, M. J. E. Hewlins, and A. Lycka, Phosphorus, Sulfur, and Silicon, 155, 167 (1999).

- [3] M. Gnanadeepam, S. Selvaraj, S. Perumal, and S. Renuga (unpublished results).
- [4] A. J. Boulton and A. McKillop, Comprehensive Heterocyclic Chemistry (Pergamon Press, London, 1984), 1st ed., p. 1038.
- [5] S. M. Liebowitz, J. B. Lombardine, and C. I. Allen, Eur. J. Pharmacol., 120, 111 (1986).
- [6] V. Paul, D. Rene, and R. Paul, Bull. Soc. Chim. Fr., 1252 (1962).
- [7] A. W. Faull, Appl. W., 097,29,104 (1996); Chem. Abstr., 127, 234328 (1997).
- [8] W. Foery, A. Nyffeler, H. R. Gerber, and H. Martin, Appl. EP, 190, 105 (1986); Chem. Abstr., 105, 166904 (1986).
- [9] V. Vijaya Bhasker, Ph.D. thesis, Studies on the synthesis of heterocyclic compounds. Madurai Kamaraj University, Madurai, India (1997).
- [10] M. Gnanadeepam, S. Selvaraj, S. Perumal, M. J. E. Hewlins, and S. Renuga (communicated).